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ABSTRACT 

 

In the last decade, crowdfunding has emerged as a new form of Internet finance, providing founders with a channel 

through which they can raise funds from the public. Prior studies have mainly investigated two types of crowdfunding 

success predictors: conventional numerical features (e.g., project goal, duration, number of rewards, number of 

comments and the presence of a video) and features extracted from textual description and project images. In 

comparison, few studies have examined the effect of interrelations among projects on crowdfunding performance. For 

example, a founder can learn from historically invested projects when launching one’s own project. In this study, we 

extend the previous understanding by introducing the concept of “project network,” which can be constructed by 

extracting founders’ activities on crowdfunding platforms. Network-based features are extracted from the project 

network through the Node2vec method. Experimental results show that models with network-based features 

outperform those without network-based features. Furthermore, the dense dataset with densely connected projects 

achieves better prediction performance than the original one, further validating the role of a project network in success 

prediction. Another implication is that a small proportion of connected projects could help predict project success to 

avoid a high calculation cost.  
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1. Introduction 

In recent years, crowdfunding has emerged as a new form of Internet finance on a global scale. Crowdfunding 

platforms provide founders with a channel to raise funds from public by displaying their own projects in platforms 

(Yang et al., 2016). Specifically, crowdfunding can be divided into crowdlending as well as donation-, reward-, and 

equity-based crowdfunding according to the forms of rewards (Leimeister, 2012). This paper focuses on reward-based 

crowdfunding which requires fundraisers to reward investors with products or services (Zheng et al., 2017). Reward-

based crowdfunding is becoming the dominant type of crowdfunding considering the funds raised and the number of 

projects completed (Kraus et al., 2016). In many countries, crowdfunding has already become an important way for 

entrepreneurs or small enterprises to raise funds. Kickstarter, the leading crowdfunding platform in the United States, 

has released over 424,000 projects until November 2018 (Ryoba et al., 2020). In comparison, although crowdfunding 

started later in China, it has also received full public attention. Demohour 1  is the first crowdfunding platform 

                                                 
1 http://www.demohour.com/ 
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established in 2011. Subsequently, crowdfunding has developed rapidly in China, and JD Finance2 has become one 

of the largest reward-based crowdfunding platforms. As of 2020, over 21,000 projects launched in JD Finance have 

raised a total amount of US$1.03 billion. 

A crowdfunding campaign is considered successful if it reaches the funding goal within a stipulated time period. 

In reality, the proportion of successful projects is relatively low on most platforms. For example, successful projects 

account for only 36.52% of all projects on Kickstarter (Ryoba et al., 2020). Founders, backers, and platforms can 

benefit from the prediction of a project’s success probability. For founders, they can plan the follow-up work early if 

they know the probability of project success is relatively high (Etter et al., 2013). They can also apply corresponding 

methods to identify the influential features that can help increase the probability of project success (Yuan et al., 2016). 

For backers, project success prediction can help them invest in projects that are more likely to succeed. Moreover, 

backers can help raise funds for interesting projects by increasing their pledge or introducing those projects to their 

friends to increase the success probability of such projects (Wash, 2013). For platforms, predicting project success in 

advance can help them improve project success rate by implementing specific functions and providing strategies in 

the project guide (Yang et al., 2020). 

Many studies have investigated the crowdfunding success predictors of crowdfunding campaigns. Early studies 

have explored the impact of numerical features (e.g., raising goal, campaign duration, etc.) on project success (Mollick, 

2014; Li et al., 2016; Ryoba et al., 2020). Mollick (2014) found that goal amount, project category, the number of 

comments and updates, and the number of social network ties affect project success. Further, a few studies have 

considered the role of text or image information. For example, Yuan et al. (2016) proposed an improved Latent 

Dirichlet Allocation (LDA) model to extract textual features from project description and reward description to 

enhance models that only use numerical features. Yang et al. (2020) introduced image features to improve the 

performance of project success prediction. However, so far, few studies have examined the interrelations among 

crowdfunding projects and their impact on crowdfunding performance.  

Our research is motivated by the assumption that the performance of crowdfunding projects is interrelated. On 

the one hand, project founders’ previous experiences gained in historical projects can help them operate a new one 

(Cappa et al., 2020). In other words, the outcomes of their past projects affect those of their future projects. On the 

other hand, project founders’ investing and following behaviors indicate their interests or expertise in corresponding 

projects. The investing and following behaviors can be interpreted as a signal of their endorsement. In turn, the project 

founders who perform the investing and following behaviors can learn from the corresponding crowdfunding projects 

when launching their own projects. According to the aforementioned two mechanisms, we assume that the hidden 

project interrelations parsed from project founders’ online activities can be conducive to predict project success.  

Therefore, we construct a project network by identifying project founders’ online activities (e.g., launching, 

investing, and following) and extracting network-based features to improve the performance of project success 

prediction. First, we propose to construct a project network to profile the implicit relations among crowdfunding 

projects by analyzing project founders’ online activities. Second, we extract network-based features from the project 

network and combine them with basic numerical features to solve the project success prediction problem. Finally, 

using a real-world crowdfunding dataset, we perform an empirical analysis to confirm whether these network-based 

features indeed boost project performance compared to the baselines. To the best of our knowledge, this paper is the 

first attempt to apply the project network analysis to the success prediction of crowdfunding projects. 

The remainder of this paper is organized as follows. Section 2 introduces previous studies related to crowdfunding 

and success prediction. A survey of node embedding algorithms is also provided. Section 3 focuses on the construction 

of a project network and describes the proposed model. Section 4 elaborates on experimental procedures and empirical 

results. Finally, the conclusions of our work and discussions of future research directions are provided in Section 5. 

 

2. Related Works 

2.1. An Overview of Crowdfunding 

The term “crowdfunding” comes from the concept of crowdsourcing and is originally defined as “an open call, 

essentially through the Internet, for the provision of financial resources either in form of donation or in exchange for 

some forms of rewards and/or voting rights in order to support initiatives for specific purposes” (Belleflamme et al., 

2013). In addition, many other researchers have proposed similar definitions of crowdfunding (Lehner, 2013; Colgren 

2014; Belleflamme et al., 2015). There are two main crowdfunding models: “keep-it-all” and “all-or-nothing”. In the 

first model, the founders can keep all pledges even if their campaigns fail. In the second model, the founders can only 

receive the funds after their projects succeed (Cumming et al., 2019). Most crowdfunding platforms currently apply 

the all-or-nothing model. Normally, crowdfunding involves three main stakeholders: the founders who need to raise 

                                                 
2 http://z.jd.com/bigger/search.html 
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funds by launching projects, the backers who fund the projects, and the crowdfunding platforms (Kaur and Gera, 

2013).  

2.2. Determinants of Project Success 

Predicting the success of a crowdfunding project is a much-discussed topic in the literature. Related to this, 

previous studies have explored many factors that influence the performance of crowdfunding projects. 

In the early stage, many numerical features have been studied for crowdfunding project success prediction. Li et 

al. (2016) grouped numerical features into three subsets: static features (can be obtained when the project is launched, 

such as project goal), dynamic features (can change over time, such as the number of backers), and social media 

features (can be obtained from social media, such as the number of Facebook friends). Greenberg et al. (2013) analyzed 

the effects of static features (i.e., project goal, project category, project duration, the number of rewards, the presence 

of a video, the connection of Twitter or Facebook, and the number of sentences in project description) and social 

media features (i.e., the number of Facebook friends, and the number of Twitter followers) on project success. Mollick 

(2014) and An et al. (2014) proved that dynamic features (i.e., the number of backers, the number of updates, and the 

number of comments) that provide signals of backers’ enthusiasm for or interest in a project can help prediction. Chen 

(2015) evaluated a dynamic feature (i.e., the number of Facebooks shared) and validated that sharing crowdfunding 

campaigns on social media helps predict success. In addition, Kaur and Gera (2017) counted the number of tweets 

posted on Facebook and Twitter by backers, founders, or communicators and used the number to improve the 

performance of success prediction. With the goal of enhancing the interpretability and simplicity of the results, Ryoba 

et al. (2020) proposed a feature subset selection tool to select features from a whole set of static, dynamic and social 

media features. Several existing studies have attempted to leverage the social networks of founders and backers for 

success prediction. Guided by social identity theory, Kromidha and Robson (2016) reported that the social identities 

of founders or backers within larger social networks can help raise more money. The empirical evidence of this 

research showed that the number of founders’ Facebook friends and the number of sharing by backers can affect the 

performance of a crowdfunding project. 

Meanwhile, the textual description of crowdfunding projects discloses detailed project information to potential 

backers. Many studies have shown how textual features, such as description length as well as sentiment and topical 

features of project description, can be used to predict crowdfunding success. For example, Zhou et al. (2018) 

conceptualized the process by which a founder obtains funding from backers using project description as part of the 

persuasion process. They identified the length, readability (the ease of understanding), and tone (the ratio of positive 

and negative words) of textual description in determining the persuasion effect as a potential antecedent of funding 

success. Wang et al. (2017) argued that sentiment in project description represents a founder’s attitude and can impact 

backers’ investment intention. In addition, the topic (Yuan et al., 2016), linguistic styles (i.e., concrete language, 

precise language, interactive style and psychological distancing) (Parhankangas and Renko, 2017), message framing 

(positive or negative framing) (Moradi and Dass, 2019), and narrative style (e.g., results in progress and ongoing 

journey) (Cappa et al., 2020) in project descriptions are also considered as important factors of project success.  

Furthermore, rich visual images and videos in the project description increase a project’s attractiveness to 

potential backers. The number of images, as a simple feature, has been introduced to help predict crowdfunding 

success (Yang et al., 2020; Beier and Wagner, 2015). Chen et al. (2019) also provided some examples to demonstrate 

the differences in visual styles (e.g., delight vs. horror and bright vs. dark,) between successful and failed projects and 

validated their role in success prediction. Meanwhile, Kim and Park (2017) analyzed founders’ facial expressions in 

their profiles and found that smiling faces can serve as a significant signal of project quality that helps establish trust. 

Shi et al. (2021) assumed that multimedia information, such as the combination of textual and audio features, is helpful 

for project success prediction. 

Some studies have also investigated the interactions between founders and backers in predicting project success. 

For example, Wang et al. (2018) measured interactions, namely, comments from backers and replies from founders. 

Troise (2020) built an interaction network and extracted topological metrics (e.g., degree centrality and density) to 

help predict crowdfunding performance. However, the interrelations among crowdfunding projects were rarely 

investigated. In this study, the interrelations between project 𝑝𝑖  and project 𝑝𝑗 can be: 1) 𝑝𝑖  has historical experience 

on 𝑝𝑗, meaning 𝑝𝑖  and 𝑝𝑗 are launched by the same founder and 𝑝𝑖  finished before 𝑝𝑗, 2) 𝑝𝑖  endorses 𝑝𝑗, meaning 𝑝𝑗 

is followed or supported by a founder who have launched 𝑝𝑖 , 3) 𝑝𝑖  learns from 𝑝𝑗, meaning 𝑝𝑗 is followed or supported 

by a founder who will launch 𝑝𝑖 .  
Other fileds have examined the role of entity interrelations on entity performance. For example, Zhang et al. 

(2015) believed that stock price movements are influenced by multiple competitors and collaborators, therefore they 

used the company interrelationships (i.e., cooperation and competition) to predict stock performance. Gitinabard et al. 

(2019) noticed that students interact with each other when discussing questions on blended courses. He proposed a 
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model to extract student interrelations and used it to predict students’ course performance. Similarly, our study holds 

the view that the performance of crowdfunding projects is interrelated and that the influence will propagate along the 

network. For example, a founder’ success experience in one’s past projects can benefit follow-up projects. Moreover, 

projects launched by different founders can influence one another through the founders’ activities (e.g., supporting or 

following projects). From this point of view, we propose to construct a project network by analyzing founders’ 

activities and extracting the network-based features to enhance the crowdfunding performance prediction.  

2.3. Prediction Algorithms on Crowdfunding Success 

Previous studies generally adopted machine learning (ML) methods to deal with the crowdfunding success 

prediction problem. Logistic regression (LR) is widely used in this task due to its high interpretability (Mollick, 2014; 

Zhou et al., 2018; Kaur and Gera, 2017; An et al., 2014). LR can sometimes work well. For example, Kaur and Gera 

(2017) compared the performance of LR with the performance of naive Bayes, decision tree (DT) and random forest 

RF), and found that LR performed best on their dataset. However, LR failed in most cases because the data usually 

cannot be linearly learned. An et al. (2014) used both LR and support vector machines (SVM) with three different 

kernels and found that all three SVMs outperformed LR. Many other empirical studies have applied various ML 

techniques other than LR, including SVM, DT, RF, etc. For example, Greenberg et al. (2013) trained an SVM classifier 

and a DT classifier on their static and social media features. SVMs were also trained on sentiment features extracted 

from text through sentiment analysis (Wang et al., 2017). Moreover, the RF is an ensemble algorithm that integrates 

multiple DTs and can be used to overcome the shortcomings of overfitting and low stability in a single decision tree 

(Rokach, 2016; Chen et al., 2015; Yuan et al., 2016; Ahmad et al., 2017). Etter et al. (2013) used k-nearest neighbors 

(KNN) and Markov chain to solve prediction problem. Meanwhile, Li et al. (2016) aimed to estimate the time of 

success and applied the survival analysis and censored regression approach. Ryoba et al. (2020) used whale 

optimization algorithm to select features and used KNN to predict project success.  

Table 1 lists the main determinants and prediction algorithms used for crowdfunding success. Basic numerical 

features, especially the static ones, are commonly used features that are often selected as the baseline feature set. LR, 

SVM, DT and RF are the widely used algorithms for project success prediction. In our work, we aim to examine 

whether the project network can provide a better solution to the project success prediction problem. In particular, we 

focused on feature extraction of the project network and tested the performance of the network-based features on these 

widely used algorithms. Given the superior performance of boosting method and the popularity of deep learning, we 

also evaluated adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), light gradient boosting 

(LightGBM) and deep neural networks (DNN) in our work. 

2.4. Node Embedding Algorithms 

Graph analysis has attracted increasing attention. In the early years, traditional local network features, such as 

degree and clustering coefficients, were widely used in network analysis. Node embedding algorithms that extract 

global structural information of nodes can precisely capture the network features compared to the traditional features. 

There are three kinds of algorithms for node embedding: factorization, deep learning and random walk.  

Factorization-based algorithms use variable matrices (e.g., adjacency matrix, Laplacian matrix, and transition 

probability matrix) to represent connections in network and embed nodes by matrix factorization, including LLE 

(Roweis and Saul, 2000), graph factorization (Ahmed et al., 2013), GraRep (Cao et al., 2015), Hope (Qu et al., 2016), 

etc. Most factorization-based algorithms require the computation of eigenvalues and eigenvectors, which can be time-

consuming on large real-world networks.  

Deep learning methods, e.g., graph convolutional networks (GCN), solve the node embedding problem by 

designing a convolution operator on graph (Kipf and Welling, 2016). Similar to the traditional CNN, the new 

embedding of one node aims to iteratively aggregate its neighbors’ embeddings. Velikovi et al. (2017) proposed graph 

attention network (GAT) as an improved version of GCN by using attention machinism to assign different weights on 

different neighbors. 

As extensions of word2vec in graph anlysis, the basic idea of random walk-based algorithms is that one node 

affects its neighbor nodes, just like two consecutive words in a sentence. Deepwalk and Node2vec are the two most 

popular algorithms based on random walks. DeepWalk samples nodes through random walks, and a sample of nodes 

is regarded as one sentence. Then, word embedding (e.g., word2vec (Mikolov et al., 2013)) can be used to convert 

those nodes into vectors (Perozzi et al., 2014). However, the random walk strategy in DeepWalk does not consider 

the edge weights and only explores neighbors in depth-first search (DFS) style. Grover and Leskovec (2016) proposed 

the Node2vec algorithm with a new sampling strategy that combine DFS and breadth-first search (BFS) style. In 

addition, the edge weights are involved in the calculation of transition probability between nodes. Therefore, 

Node2vec has high flexibility and can be used in various contexts. For example, Zhou et al. (2021) used the Node2vec 

method to detect Internet financial fraud. Meanwhile, Kazemi and Abhari (2020) proposed a model based on 

Node2vec to learn the representations of papers in the scientific literature network. According to a survey of node 
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embedding algorithms, Node2vec performed best in classification tasks in various datasets compared to factorization-

based algorithms and deep learning methods (Goyal and Ferrara, 2018). In summary, Node2vec can learn node 

embeddings by preserving neighbor nodes in network. Moreover, it can scale to large real-world networks efficiently, 

making it a famous node embedding technique. Therefore, we chose Node2vec to extract network features in the 

current study.  

 

Table 1: Determinants and Prediction Algorithms of Project Success 
Studies Algorithms used Features used 

Mollick (2014) LR Static and dynamic features  

Zhou et al. (2018) LR Static features, social media 

features, and the length, readability 

and tone of project description 

Kaur and Gera (2017) DT, naive Bayes, RF, and LR Static and social media features 

An et al. (2014) LR and SVM Static and dynamic features 

Greenberg et al. (2013) DT and SVM Static and social media features 

Wang et al. (2017) SVM and sentiment analysis Statis, dynamic features, and 

sentiment features of project 

description 

Chen et al. (2015) RF Static and dynamic features 

Yuan et al. (2016) Domain-constraint latent Dirichlet allocation and 

RF 

Static and topical features of the 

project and reward description 

Ahmad et al. (2017) DT and weighted RF Static and social media features 

Etter et al. (2013)  KNN and Markov chain Static, dynamic, and social media 

features 

Li et al. (2016) Survival analysis and censored regression Static, dynamic, and social media 

features 

Ryoba et al. (2020) Whale optimization algorithm and KNN  Static, dynamic, and social media 

features 

Kromidha and Robson (2016) Ordinary least squares regression (OLSR) Static, dynamic, and social media 

features 

Parhankangas and Renko (2017) LR Static features and linguistic styles 

of project description 

Cappa et al. (2020) OLSR  Static and dynamic features and 

narrative style of project description 

Chen et al. (2019) Glove and convolutional neural networks (CNN) Static and textual features of project 

description and visual features of 

project images 

Yang et al. (2020) OLSR Static and dynamic features, the text 

length of project description, and 

the numbers of images and videos. 

 

3. Proposed Methodology 

The proposed framework for crowdfunding success prediction with a project network is shown in Figure 1. This 

framework includes three main components: network construction, feature extraction, and prediction. In this paper, 

we propose the construction of a project network by using interrelations among crowdfunding projects. Node 

embedding method is applied to extract features of the project network. Finally, these features are combined with 

basic numerical features in the current research to train the widely-used ML models (e.g., LR, SVM, DT, RF, 

AdaBoost, XGBoost, LightGBM and DNN) to predict project success. 
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Figure 1: The Framework for Crowdfunding Success Prediction with Project Network 

 

3.1. Network Construction 

In this work, we construct a project network by analyzing the project founders’ activities. Figure 2 provides an 

illustration of founders’ activities relating to projects, from which interrelations among projects can be extracted. In 

this example, founder A launched projects p1, p2, and p3 successively, and founder B launched projects p4. The 

closing times of campaigns p1-p4 are also provided in Figure 2. We assume that the performance of these 

crowdfunding projects is interrelated given the following mechanisms. Mechanism 1 explains how projects launched 

by the same founder are interrelated, and mechanism 2 explains how projects launched by different founders are 

interrelated. Note that founders’ activities are not limited to the listed three (i.e., launching, following and supporting), 

but the three representative activities, compared to only “viewing projects”, indicates the strong interrelations among 

projects. Figure 2 illustrates how we construct a project network for p5 by its launching date (i.e., 2020/12/01) to 

predict its success probability. 

Mechanism 1. Each founder’s crowdfunding experience in past projects may affect the performance of 

subsequent projects (Cappa et al., 2020). We define this type of link as “historical experience”. In Figure 2, we use 

solid arrows to indicate the impact of p4’s experience on p5 and the impact of p1’s experience on p2 and p3. 

Mechanism 2. If a founder follows or invests in another founder’s projects, their projects are interrelated by the 

following way. 

First, a founder’s following and investing behaviors indicate one’s interests and confidence in corresponding 

projects, which can be interpreted as a signal of endorsements; we define this type of link as “endorse.” In Figure 2, 

founder B followed p1 and invested in p3. Hence, p1 and p3 may be interesting or valuable enough to gain B’s attention. 

If B is an experienced founder, then B’s endorsements in p1 and p3 indicates the projects’ quality. The experience of 

B can be interpreted from B’s historical experience in operating projects (i.e., p4). Therefore, we build “endorse” links 

from p4 to p1 and p3. 

Second, a founder can improve one’s projects by learning from others’ crowdfunding projects; we define this type 

of link as “learn”. Founders learn crowdfunding strategies, such as attracting potential backers, from their supporting 

experiences (Zheng et al., 2016). Learning can be divided into two types: direct and indirect. The indirect experience 

is learned by observing others’ activities (Argote and Todorova, 2007; Darr et al., 1995). In the context of 

crowdfunding, Yang and Hahn (2015) pointed that founders obtain direct experience by learning from their own 

previous projects (i.e., what we call “historical experience” in this paper) and indirect experience by backing other 

founders’ initiatives. In the case of Figure 2, founder B followed p1 and invested in p3. Hence, the learning experience 

from p1 and p3 can affect the performance of p5, i.e., the founder of p5 learns from the founders of p1 and p3. 
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Figure 2: An Illustration of Project Network Construction 

 

3.2. Feature Extraction 

We chose the widely-used numerical features as basic features listed in Table 2 by following previous studies 

(Wang et al., 2020; Yuan et al., 2016; Zhou et al., 2018). The basic features are then combined with network-based 

features to predict project crowdfunding performance. This research aims to early predict the success probability of a 

project when the project is just launched, therefore we ignore the dynamic features during the fundraising lifecycle. 

 

Table 2: The Descriptions of Basic Features 

Basic features Description 

goal A founder-defined goal amount when the project was launched 

Weibo Whether a Weibo3 account was provided on a founder’s home page 

video Whether a video was provided on the project page 

photo_num The number of photos used on the project page 

reward_num The number of rewards showed on the project page 

project_num The number of historical projects 

 

We assume that projects within the project network influence mutually and that the interrelations can help enhance 

the success prediction task. For example, the more historical experience in-edges linked to one project, the more 

operational crowdfunding experience the founder of this project has, which can contribute to the success of this project. 

Moreover, a project with many successful neighbor projects is likely to gain guidance or endorsements from its 

neighbors. Thus, the structural information of the project network is valuable for project success prediction.  

We used Node2vec algorithm to extract network-based features from the project network. Node2vec treats each 

node and a random walk as a word and a sentence, respectively. A random walk can be described as a random process. 

Performing a random walk on a graph results in a path that consists of a sequence of nodes. For example, in Figure 3, 

given a starting node 𝑡, a random walk visits the next node 𝑣 with a certain probability. The probability that the current 

node 𝑣 will visit the next node 𝑥 is calculated as follows: 

𝑃(𝑐𝑖 = 𝑥|𝑐𝑖−1 = 𝑣) = {
𝜋𝑣𝑥

𝑍
           if 𝑥 is the neighbor of 𝑣

0              otherwise                        
          (1) 

where 𝑍 is the normalized constant, and 𝜋𝑣𝑥 is the unnormalized transition probability from node 𝑣 to node 𝑥. Here, 

 𝜋𝑣𝑥 is determined by the previous node 𝑡 in the walk and is equal to the product of 𝛼𝑝𝑞(𝑡, 𝑥) and 𝑤𝑣𝑥, i.e., 𝜋𝑣𝑥 =

𝛼𝑝𝑞(𝑡, 𝑥)𝑤𝑣𝑥. In addition, 𝑤𝑣𝑥 is the edge weight from node 𝑣 to node 𝑥, and 𝛼𝑝𝑞(𝑡, 𝑥) is a function that can adjust 

the importance of DFS and BFS. This can be calculated by following equation: 

𝛼𝑝𝑞(𝑡, 𝑥) =

{
 

 
1

𝑝
            if 𝑑𝑡𝑥 = 0

1            if 𝑑𝑡𝑥 = 1
1

𝑞
            if 𝑑𝑡𝑥 = 2

 ,                (2) 

where 𝑑𝑡𝑥  is the shortest path distance between node 𝑡 and node 𝑥. 

 

                                                 
3 https://weibo.com/ 
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Figure 3: An Example of a Random Walk 

 

Looking at Figure 3, given a starting node 𝑡, the random walk has sampled node 𝑣, and the next node will be 

generated in (𝑥1, 𝑥2, 𝑥3, 𝑡). The probability value of visiting the next node can be calculated through Equations (1) and 

(2). Figure 3 provides the 𝛼 values calculated by Equation (2) on each link. If 𝑝 > 𝑚𝑎𝑥 (𝑞, 1), the random walk tends 

to visit the node far away from 𝑡, e.g., 𝑥2 and 𝑥3, which is called DFS style. If 𝑝 < 𝑚𝑎𝑥 (𝑞, 1), the random walk tends 

to visit the node close to 𝑡, e.g., 𝑥1 and 𝑡,which is called BFS style. Hence, the Node2vec method allows us to smoothly 

walk with both BFS and DFS through the two parameters 𝑝 and 𝑞.  

Node2vec uses Skip-gram model from Word2vec. Skip-gram considers a window of surrounding words 

{𝑤𝑚−𝐿 , … ,𝑤𝑚−1, 𝑤𝑚+1, … , 𝑤𝑚+𝐿} for a given word 𝑤𝑚, and the goal is to train a model that predicts the surrounding 

words. Figure 4 shows the architecture of Node2vec. In the Node2vec algotithm, Skip-gram is applied to train a model 

that predicts the surrounding nodes in random walks based on the given target node. After random walking and training 

Skip-gram, we can obtain the low-dimensional (dimension size=𝑑) vector representations of nodes in network. In 

addition, the project network is not static when predicting the performance of projects because the project network is 

constructed by the launching date for each tagat project. To deal with the dynamics of the project network, we use a 

dynamic embedding strategy in Node2vec (Mahdavi et al., 2018). When new projects are added to the network, we 

retrain Node2vec and update the current embeddings of all nodes. 

 

 
Figure 4: The Architecture of Node2vec 

 

We use the Node2vec algorithm to learn project embeddings in Figure 2. We set the dimension size as 128. Then 

we use t-SNE (t-distributed stochastic neighbor embedding) (Maaten and Hinton, 2008), an unsupervised machine 

learning algorithm for the visualization of high-dimensional datasets, to visualize the project embeddings in Figure 5. 

We can observe that p1, p4 and p3 are close to p5 while p2 is far from p5. The visualization indicates that p1, p4 and 

p3 are more useful in predicting the performance of p5 compared to p2. 
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Figure 5: Visualization of Project Embeddings in Figure 2 with t-SNE 

 

3.3. Prediction 

We employ the commonly used ML techniques in the field of crowdfunding project success prediction (Greenberg 

et al., 2013; Mollick, 2014; Kaur and Gera, 2017; Zhou et al., 2018) and state-of-the-art classifiers, including LR, 

SVM, DT, RF, AdaBoost, XGBoost, LightGBM and DNN, as baselines. A brief overview of the ML methods used 

in this article is given below. 

LR is a model developed from linear regression to deal with classification problems. One advantage of LR is its 

high interpretability that provides the predictive significance values of features (Kaur and Gera, 2017).  

SVM is a classic algorithm proposed by Vapnik to deal with the binary classification problem (Vapnik, 1995). 

Although SVM can solve both linear and non-linear problems by using kernel functions (e.g., radial basis function 

(RBF), sigmoid function (SF), etc.). In particular, RBF is the most effective kernel function in most cases. Thus, this 

paper uses RBF as the kernel function in SVM.  

DT is a tree-structured model with conditional control statements. DTs are viewed as easily interpretable models 

when compared with other classifiers such as black-box deep learning models. This paper applies CART algorithm to 

prevent overfitting.  

Ensemble methods including RF, AdaBoost, XGBoost and LightGBM are introduced to combine the base DT 

classifiers for better prediction performance. RF is an ensemble of decision trees trained with bagging method. 

AdaBoost, XGBoost and LightGBM are popular boosting algorithms to boost the performance of DTs (Freund, 1997; 

Chen and Guestrin, 2016; Meng, 2018). 

DNN, also known as multilayer perceptron, is a multilayer feedforward artificial neural network model. DNN can 

improve the performance of conventional neural networks by increasing the number of layers. To overcome the 

“vanishing gradient” problem due to the large number of layers, activation functions such as ReLU and MaxOut have 

been proposed to replace Sigmoid. 

 

4. Experiments and Results 

4.1. The Dataset 

We collected a real-world crowdfunding dataset from JD Finance, one of the most popular reward-based 

crowdfunding websites in China. Specifically, we retrieved all the projects displayed on the JD Finance website since 

its establishment up until April 7, 2020. Data from a total of 15,384 projects (12,483 successful projects and 2,901 

failed projects) were collected. We divided the training set and the test set by time, using the projects before January 

1, 2020 as the training set and the remaining data as the test set. Using the network construction method in Section 

3.1, we constructed a project network with 23,934 historical experience links, 8,103 endorse links, and 4,966 learn 

links. The network density is 2.85e-4. Oversampling was used to deal with the imbalanced dataset in the training set, 

given that the imbalance can lead to a learning bias (Cang and Yu, 2012). 

4.2. The Performance Measures 

Like most crowdfunding platforms, JD Finance adopts an all-or-nothing model. In this scenario, each finished 

project is either a success or a failure. Thus, the project success prediction is a classification task. We used confusion 

matrix, a widely used tool in classification tasks, to evaluate the models. Table 3 is an example of a confusion matrix, 
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which contains the number of samples correctly classified and incorrectly classified. Based on Table 3, four common 

performance metrics are defined, namely, Accuracy, Precision, Recall, and F1. 

 

Table 3: Sample Confusion Matrix 

Confusion Matrix 
Actual Class 

Success Failure 

Predicted Class 
Success TP FP 

Failure FN TN 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
        (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (5) 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (6) 

 

4.3. Experimental Results 

We compared the performance of selected models to evaluate the role of project network in project success 

prediction. Eight popular classifiers, namely, LR, SVM, DT, RF, AdaBoost, XGBoost, LightGBM and DNN, were 

compared in this section. Table 4 provides the parameters used in various classifiers and Node2vec. Details on the 

performance of the eight models with all features (basic features and network-based features) are provided in Table 5. 

 

Table 4: Parameters Used in Various Classifiers and Node2vec 

Algorithm Key parameters Parameter interpretation 

LR penalty = l2 The norm used in the penalization 

SVM kernel = rbf, gamma = 1, C = 10 The type of kernel, the values of 𝛾 and C 

DT criterion = gini The function to measure the quality of a split 

RF n_estimators = 30, criterion = gini The number of trees, the function to measure the quality of a split 

AdaBoost 
base_estimator = DT, lr = 0.1, 

n_estimators=100, ba = samme 

The base classifier, the learning rate, the maximum number of 

classifiers, boosting algorithm 

XGBoost 
lr = 0.1, n_estimators = 100, 

objective = binary:logistic 

The learning rate, the maximum number of classifiers, the cost 

fuction 

LightGBM 
boosting_type = gbdt, n_leaves = 

31, objective = binary 
The boosting type, the number of leaves, the cost function 

DNN 
n_layers = 5, activation = Relu, 

N = [256,512,1024,1024,1024] 

The number of hidden layers, the activation function, the number of 

neurons in each layer 

Node2vec d=128, r=5, k=10, p=1, q=0.5 
Embedding size, the number of walks per node, walk length, the 

values of p and q 

 

Table 5: Prediction Performance (%) of Various Classifiers with All Features 

 LR SVM DT RF XGBoost LightGBM AdaBoost DNN 

F1 70.1 76.1 82.7 89.1 88.3 87.9 82.7 84.8 

Precision 88.7 87.0 82.8 82.5 82.7 83.6 82.9 83.9 

Recall 58.1 67.1 82.6 96.7 94.6 92.6 82.5 85.6 

Accuracy 60.0 65.5 72.0 80.5 79.8 79.5 72.1 74.9 

 

As shown in Table 5, RF has the largest F1, Recall, and Accuracy, while LR has the best performance on Precision. 

Given our focus on the overall performance of classifiers, RF thus shows the best performance with the largest F1 and 

Accuracy values, outperforming the boosting models and the advanced DNN. 

4.4. Ablation Study 

Here, we built various feature sets, i.e., E1, E2, and E3, for training models in order to evaluate the role of network-

based features in predicting project success. E1 contains only basic features as listed in Table 2. E2 contains only 

network-based features (embedding via Node2vec). E3 concatenates basic features with network-based features. 

These three feature sets were then fed to LR, SVM, DT, RF, AdaBoost, XGBoost, LightGBM and DNN, respectively. 

The experimental results are provided in Table 6.  
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Table 6: Prediction Performance (%) of Various Classifiers with Various Feature Sets 

Feature set Measure LR SVM DT RF XGBoost LightGBM AdaBoost DNN 

E1 

(only basic 

features) 

F1 69.0 72.9 77.7 79.5 76.9 76.6 77.3 76.2 

Precision 88.9 88.5 85.1 85.1 86.6 87.5 83.9 86.1 

Recall 56.4 62.1 71.7 74.7 69.1 68.1 71.7 68.4 

Accuracy 58.8 62.7 68.8 68.7 66.2 66.2 65.8 65.3 

E2 

(only network- 

based features) 

F1 69.5 72.1 81.6 88.2 88.4 87.9 80.7 82.9 

Precision 80.8 81.4 81.5 81.5 82.7 82.9 82.3 82.9 

Recall 61.0 64.7 81.8 96.1 95.1 93.6 79.1 82.9 

Accuracy 56.6 59.4 70.2 79.2 79.6 78.9 68.9 72.3 

E3 

(all features) 

F1 70.1 76.1 82.7 89.1 88.3 87.9 82.7 84.8 

Precision 88.7 87.0 82.8 82.5 82.7 83.6 82.9 83.9 

Recall 58.1 67.1 82.6 96.7 94.6 92.6 82.5 85.6 

Accuracy 60.0 65.5 72.0 80.5 79.8 79.5 72.1 74.9 

 

As can be seen from Table 6, RF achieves relatively good performance in all feature sets. Moreover, E3 has the 

best performance of F1 score over E1 and E2 except for XGBoost. Taking RF as an example, the baseline RF with E1 

has F1=79.5%, Precision=85.1%, Recall=74.7%, and Accuracy=68.7%. RF with network-based features (i.e., E2) has 

F1=88.2%, Precision=81.5%, Recall=96.1%, and Accuracy=79.2%; it also outperforms the baseline RF with E1. The 

results indicate the good performance of using network-based features to predict project success. In addition, RF with 

the combined feature set (i.e., E3) achieves the best performance among others. Another observation is that the 

performance gaps between models with E2 and models with E3 are small. This indicates that the project network can 

better predict project success even without conventional basic features. 

4.5. Analysis of Feature Importance 

Given that the RF classifier had the best performance on both F1 and Accuracy, we used RF as the prediction 

model in the following analysis of feature importance. One advantage of RF is that the model can show importance 

of features based on Gini impurity or out-of-bag error (Cutler et al., 2014). In this paper, we assessed feature 

importance based on Gini impurity. Figure 6 shows the ranking of top 12 most important features. Among all features, 

the number of rewards is the most important one, followed by the number of historical projects and photos. More 

rewards can attract more backers, because they provide a variety of options to backers. The other nine important 

features are network-based features. Specifically, the sum of the importance of network-based features (128 dimension) 

is 92.0%, thus proving useful and valuable role of the project network in project success prediction. 

 

 
Figure 6: The Importance of Features in RF 

 

4.6. Experiments on the Dense Dataset 

To further validate the role of project network, we removed the isolated nodes that were not connected with any 

other nodes in the original dataset. We labelled the resulting dataset as the “dense dataset”. Compared to the original 
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dataset, the dense dataset suffers less from network sparsity problem. The dense dataset consists of 9,141 projects. 

The network density is 8.08e-4 (three to four times higher than the density of original dataset). Figure 7 gives an 

example of the comparison between an original dataset and a dense dataset. The gray nodes at the periphery of the 

network in the original dataset are isolated with other nodes. In the dense data set, we removed these isolated nodes. 

 

 
Figure 7: Example of a Comparison between an Original and a Dense Dataset 

 

Results show that classifiers, including LR, SVM, DT, RF, AdaBoost, XGBoost, LightGBM and DNN, perform 

better with the dense dataset than those with the original dataset. Table 7 shows the experimental results of various 

classifiers with the dense dataset after using all features. The performance is improved compared to the results in 

Table 5. The classifier RF can reach F1=93.1% on the dense dataset but can only reach F1=89.1% on the original 

dataset. The values of Precision, Recall, and Accuracy also increase for RF with the dense dataset compared to those 

with the original dataset. 

 

Table 7: Prediction Performance (%) on the Dense Dataset 

 LR SVM DT RF XGBoost LightGBM AdaBoost DNN 

F1 71.8 76.0 87.3 93.1 92.6 92.7 88.0 89.4 

Precision 93.9 92.1 88.2 87.5 88.2 88.1 88.5 88.6 

Recall 58.1 64.7 86.4 99.1 97.5 97.8 87.6 90.1 

Accuracy 60.1 64.2 78.1 87.2 86.4 86.5 79.2 81.3 

 

The high accuracy on the dense dataset indicates the role of the project network, that is, a densely connected 

network can better predict project success than a sparsely connected network. This shows that Node2vec can extract 

more valuable features from a dense dataset. The results also provide clues for future project success prediction, that 

is, a small proportion of a connected project network can effectively predict project success given that large network 

calculation involves high calculation cost. 

4.7. Experiments for Various Edges 

To validate the performance of three types of edges in project network, we trained Node2vec with different edges 

and made predictions with corresponding embeddings. The results are shown in Table 8. As can be seen, the model 

with only historical experience edges has the worst prediction performance. The performance of the other two models 

with only endorse edges or only learn edges is similar, outperforming the model with only historical experience edges. 

Historical experience edges only exist within the same founders’ projects, while endorse edges and learn edges connect 

projects launched by different founders. Therefore, historical experience edges constitute complete graphs which 

contain relatively monotonic information. The results indicate that Node2vec extract more valuable features from the 

network with endorse or learn edges than that with historical experience edges. Table 8 also shows that the model 

using all edges has the best performance. Also, we used the paired t-test to compare the prediction results of the model 

with all edges and model with a single type of edges, and the results indicate the significant difference. The 

significance levels are labelled in the first column of Table 8. 
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Table 8: Prediction Performance (%) of Various Edges with RF 

 Accuracy  Precision Recall F1 

Only historical experience edges* 79.5 80.9 97.5 88.3 

Only endorse edges*** 80.3 81.7 97.5 88.9 

Only learn edges** 80.3 81.7 97.6 88.9 

All edges 80.5 82.5 96.7 89.1 

Note: The significance levels indicate the difference between the models with a single type of edges and the model 

with all edges by using the paired t-test. ***: p<0.001; **: p<0.01; *: p<0.05. 

 

4.8. Discussions 

The information hidden in the project network is helpful in achieving successful prediction. On the basis of this 

intuition, we extracted network-based features from the project network and combined them with basic features to 

enhance the performance of project success prediction. The experimental results of our ablation study show that the 

classifiers using all features have good prediction performance, thus proving the value of network-based features 

extracted from the project network. In addition, the dense dataset with better predictive performance can be extracted 

from the entire project network. Finally, the results of our empirical tests reveal that the prediction performance varies 

on different ML classifiers. By using a real-world dataset, we found that RF has the best performance among all 

classifiers. The possible reason is that RF, as an ensemble learning method, can overcome the shortcomings of 

overfitting and low stability of a single classifier (Rokach, 2016).  

 

5. Conclusions and Future Works 

In the field of crowdfunding project success prediction, previous studies mainly focused on basic numerical 

features, while recent works have explored the impacts of project descriptions, reward descriptions, and photos used 

on crowdfunding websites. However, the interrelations among projects have not been fully explored. Thus, the current 

work aims to fill the aforementioned research gap. In this paper, we propose the concept of “project network” which 

builds interrelations among crowdfunding projects by analyzing founders’ activities on crowdfunding platforms. 

Network-based features extracted from the project network are used for success prediction. Based on a real-world 

crowdfunding dataset crawled from JD Finance website, RF with all features achieved the best performance. A dense 

dataset with densely connected projects can obtain superior performance than the original one. 

This study provides several practical implications. First, founders can benefit from both their historical 

crowdfunding experiences and those of other founders. For a founder, reviewing one’s past projects, studying the 

successful experiences of others’ projects, and obtaining support or endorsement from expert founders could help 

increase the success probability of one’s own follow-up crowdfunding campaigns. Second, backers could evaluate the 

future performance of a crowdfunding project by analyzing its interrelations with other projects. Third, crowdfunding 

platforms can implement functions to encourage further interactions among founders or establish intimate 

interrelations among projects, e.g., recommending successful projects to a new founder or building a tutorial system 

among founders. 

Our future work will enhance the model by mining more valuable information from the project network. In terms 

of limitations, first, our current study only considers network features achieved with Node2vec. Adding some 

traditional static network features, such as node degree, clustering coefficient, closeness centrality, and betweenness 

centrality, may help improve the performance to some extent. Second, future works can construct a heterogeneous 

network that includes different types of entities, such as projects, founders, and backers. Furthermore, performing 

heterogeneous network analysis can help capture more information to guarantee a successful prediction. Third, future 

studies could extract features from dynamic changes of the project network. Last, real-time construction of project 

network and online deployment of algorithms can further validate the network effect. 
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